

Wie Profilbildung im Netz funktioniert

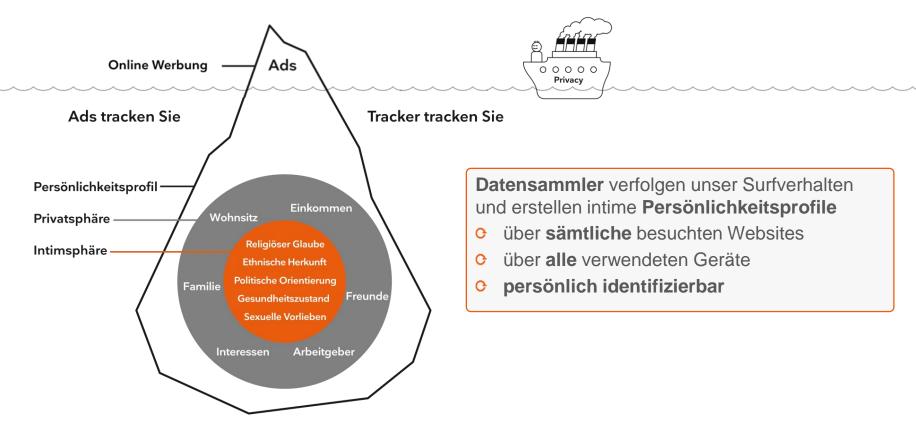
und du dich technisch schützen kannst

Christian Bennefeld (aka "Benne")
Gründer etracker
Gründer und Geschäftsführer eBlocker

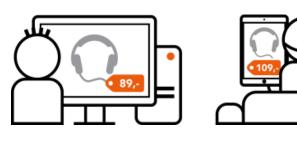
© 2013 Geek Culture

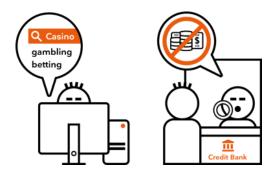
joyoftech.com

Ein typisches Online-Kauferlebnis



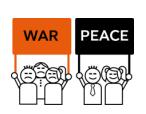
Wir sehen nur die Spitze des Eisbergs

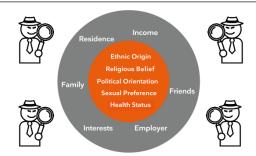



Gefahren von Persönlichkeitsprofilen

"Ich hab' doch nix zu verbergen."

Gefahren von Persönlichkeitsprofilen





Preisdiskriminierung

Bonitäts- und Gesundheits-Scoring

Manipulation & Filter Blase

Identitätsdiebstahl & Datenhandel

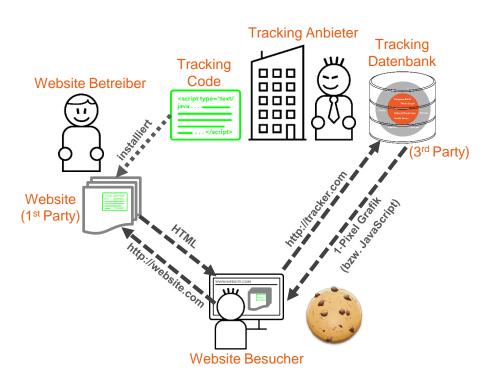
Besondere Gefahren für Aktivisten

Identifikation

Diskriminierung

Observation

Verhaftung



Wie Tracking funktioniert

Vom Seitenaufruf zum Persönlichkeitsprofil

Wie funktioniert Tracking?

Sichtbare 3rd Party "Tracking-Pixel"

- Social Plugins wie Facebook Like-Button, Google +1
- Online-Werbung wie DoubleClick, Adsense, Taboola, ...
- Eingebundene Inhalte wie Google Maps, Youtube, Twitter, ...

Techniken zur Besucher-Wiedererkennung

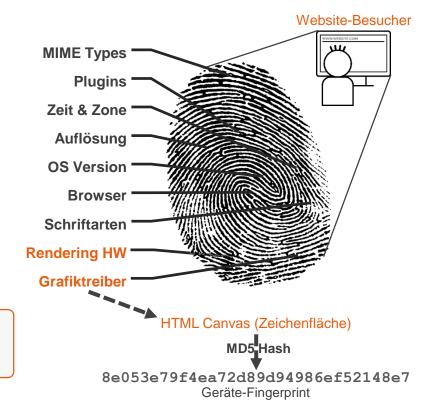
Profilbildung über verschiedene Sessions und Websites erfordert Wiedererkennung des Besuchers

Cookies & Tags

- enthalten eindeutige ID häufig Hash über E-Mail / Handynummer des Nutzers
- c können bei Folgebesuchen wieder ausgelesen und dem Profil zugeordnet werden
- werden über JavaScript als "1st Party" Cookies getarnt, obwohl meist "3rd Party"
- "Tagging" mit LSOs: Local Shared Objects
 - HTML5 localStorage, Flash-Cookies, Silverlight-Cookies, ...
 - LSOs können nicht so leicht gelöscht werden

Cookies sind häufig nur noch Fall-Back-Methode, da sie leicht geblockt und gelöscht werden können

Nicht-invasive Wiedererkennung


Fingerprinting

- Ermittlung technischer Merkmale des Gerätes/Browsers ohne LSOs
- Canvas Fingerprinting: Eigenschaften der Grafik-Hardware und Schriftarten
- Cross-Browser Identifikation eines einzelnen Gerätes möglich

App IDs & Geräte IDs

Apps generieren UUID und/oder lesen
 Geräte IDs (IMEI, MAC, Telefonnr.) aus

Professionelle Tracker benötigen keine Cookies oder LSOs

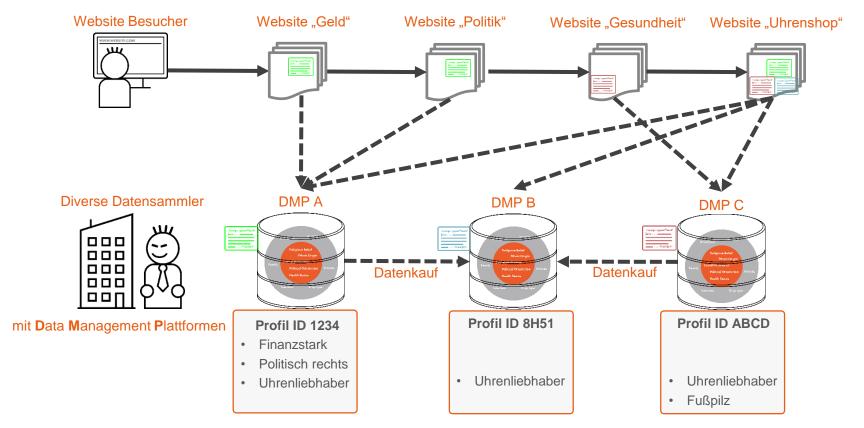
Und was ist mit IP-Adressen?

IP-Adressen sind personenbezogene Daten

- Ohne Einwilligung des Nutzers nicht verwendbar (in der EU)
- Speicherung & Verarbeitung nur nach Verkürzung (123.235.146.XXX)
- Geografische Lokalisierung (Ortsebene) mit verkürzter IP-Adresse möglich
- IP-Anonymisierung über Tor/VPN/Proxy kann geo. Herkunft verschleiern

Aber: (Europäische) Tracker nutzen gar keine IP-Adressen zur Profilbildung

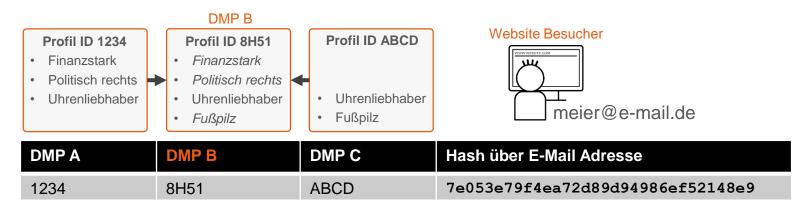
Achtung: Tracker erfassen Profildaten auch bei IP-Anonymisierung



Datenhandel und personenbezogene Überwachung

Datenanreicherung, De-Pseudonymisierung und personenbezogene Profile

Profilanreicherung & Datenhandel



Datenanreicherung mit "Cookie-Matching"

- Datenanreicherung durch Client-seitigen Austausch der DMPs
 - Bei Tracker-Aufruf werden IDs und/oder Profildaten in Variablen gegenseitig übergeben
 - ID Matching-Tabelle wird bei jeder DMP geführt
 - Beispiel: DMP B kauft Daten von DMP A und DMP C

Datenanreicherung über Pseudonym / Hash C

- Nicht personenbezogene, pseudonyme Daten dürfen gehandelt werden
- Hashes von E-Mail / Handynummer sind pseudonyme Daten
- Datenanreicherung durch serverseitigen Daten- und Hash-Austausch
- Matching-Tabelle der Hashes (wie IDs beim "Cookie-Matching") Datensammler A Website Besucher Login "toller kostenloser Dienst" meier@e-mail.de Login "Shop" - - - Geld & Luxus" meier@e-mail.de meier@e-mail.de Profil ID 1234 7e05...48e9 meier@e-mail.de 7e05...48e9 Verfahren ist heute Standard Finanzstark Google Audience Center 360 meier@e-mail.de Facebook Custom Audience Finanzstark

Personenbezogene Persönlichkeitsprofile

- Personenbezogene Profilbildung nur bei Einwilligung zulässig
- O Aber: Einwilligung wird regelmäßig erteilt bei "gratis" Account-Anlage

Ich stimme den Nutzungsbedingungen von Google zu und habe die Datenschutzerklärung gelesen.

34 DIN-A4 Seiten Datenschutzerklärung

Google Datenschutzerklärung Stand: 31.03.2020

"... können Ihre Aktivitäten auf anderen Websites und in Apps mit Ihren personenbezogenen Daten verknüpft werden" "Wenn Sie Websites besuchen, auf denen Google Analytics eingesetzt wird, [...wird Google...] Daten über Ihre Aktivitäten auf dieser Website mit Aktivitäten auf anderen Websites verknüpfen, auf denen ebenfalls unsere Werbedienste genutzt werden."

Personenbezogene Totalüberwachung durch Google

>80% der Websites nutzen Google Analytics
>90% der Nutzer verwenden Google Suche

Wie man sich technisch schützen kann

Betriebsgeheimnisse der eBlocker Technologie

eBlocker vs. eBlocker Open Source

eBlocker GmbH

- Okt. 2014 gegründet
- Entwicklung eines Plug & Play Gerätes zum Schutz der Privatsphäre
- Business Modell: Verkauf von Geräten & Software-Lizenzen zum Selbstbau
- Zehntausende Kunden gewonnen, zahlreiche Innovationspreise erhalten
- 2019 insolvent, da Hauptinvestor kurzfristig abgesprungen war

eBlocker Open Source UG

- O Dez. 2019 gegründet (von ehemaligen eBlocker GmbH Gründern)
- Übernahme der eBlocker Technologie vom Insolvenzverwalter
- C Ziel: eBlocker Technologie kostenfrei jedermann zur Verfügung stellen
 - Non-Profit auf ehrenamtlicher Basis (wir haben andere Jobs ☺)
 - Software für Raspberry Pi zum Geräte-Selbstbau
 - Open Source Entwicklung gemeinsam mit Community
 - Keine Hintertüren, kein Business Modell
 - O Deckung der Kosten über Spenden

Komponenten für Privatsphäreschutz

Bekannte Tools: Keine guten Lösungen

- Browser Private Mode oder Cookies löschen.
 - Nur Schutz vor lokalem Storage, kaum Tracker-Schutz, keine IP-Anon.
- Browser Plugins (Ghostery, Privacy Badger, uBlock, etc.)
 - Schützt keine Apps, nicht für alle Geräte / OS, keine IP-Anon.

- Nur IP-Anonymisierung, Zwang zu neuem Browser, Apps werden nicht geschützt, nicht für alle OS
- Lokales Tor-Gateway oder VPN-Gateway auf Client Rechner oder im LAN
 - Our IP-Anonymisierung, kein Tracker-Schutz, gut: gesamte Kommunikation wird "IP-anonymisiert"
- Internet Gateway (disconnect.me, hidemyass, etc.)
 - Gut: Tracker-Schutz inkl. IP-Anonymisierung, Nachteil: großes Vertrauen in Anbieter, SSL-Traffic?
- Für alle Tools gilt: Für nicht-Techniker kaum zu bedienen
- Fazit: Gute, einfache Lösung für jedermann und alle Geräte existiert nicht

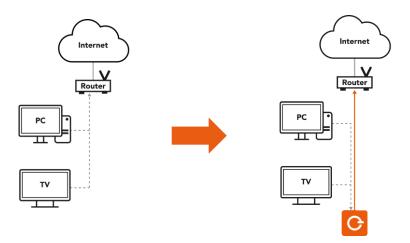
eBlocker Solution Approach

Technical approach

- Plug & Play setup; easy to operate
- All network devices are protected
- Individual protection per device/user
- All devices and apps work as usual
- Existing WiFi router remains in place
- No changes to network topology
- Privacy by design
- No user data in the cloud
- Hardware independent development

eBlockerOS

- Open Source Code
 - Core in Java, JavaScript, C & Ruby
 - O UI based on SPAs w/ REST-API
- Based on standard protocols & OSS
 - O HTTP, TLS, DNS, DHCP, ICAP
 - Oebian Linux

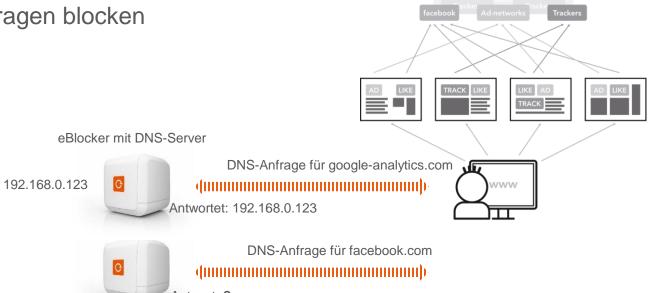

Hardware Recommendations

- Standard ARM SBC (Raspberry Pi 4)
 - 4 core, 1 GHz, 2 GB RAM, 8 GB eMMC
- Runs on any Linux system, incl. VM
 - Also prototyped on standard routers

Wie funktioniert "Plug & Play"?

- eBlocker muss als Gateway gesamten IP-Verkehr zum Filtern erhalten
- Ziel: "Plug & Play setup"
- Aber: Konfiguration von Gateway und DHCP zu komplex für "DAUs"
- Lösung: Hacker Angriffs-Technik "ARP-Spoofing"
- "Gespoofte" Geräte schickt alle IP-Pakete zum eBlocker ✓

Verfahren zum "Tracker blocken"



user profiling

• Wie kann man Tracker auf Netzwerkebene erkennen und blocken?

• Annahme: Tracking-Domains sind bekannt

• Idee: DNS-Abfragen blocken

C Aber:

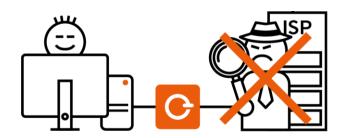
Probleme beim DNS-Blocking & Alternative

DNS-Blocking Probleme

- Overblocking
 - O Domain ist nicht grundsätzlich "böse", sondern nur bestimmte URLs einer Domain gesamte Domain wird aber trotzdem geblockt
- Underblocking
 - IP-Adresse eines Trackers kann hinter beliebigem DNS-Eintrag sein (z.B. "test.anwender.com")
- Alternative zu DNS-Blocking: Deep Packet Inspection (DPI)
 - Ziel: Pattern-Matching auf Target URL, um Tracker genauer zu erkennen z.B. /*tracker*
 - **Bei einem Match:** eBlocker beantwortet Request anstelle des Targets
 - Herausforderung: URL ist bei SSL nicht bekannt, sondern nur Domain

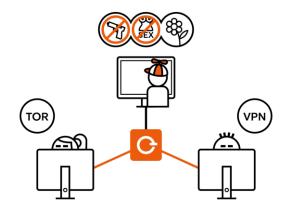
Exkurs: Deep Packet Inspection bei SSL

- Ziel: Mustervergleich auf Target URL
- Problem: Großteil des Datenverkehrs ist per SSL verschlüsselt
- Lösung: SSL-Bumping / SSL Man-in-the-middle
- eBlocker agiert als Certification Authority und terminiert die SSL-Verbindung

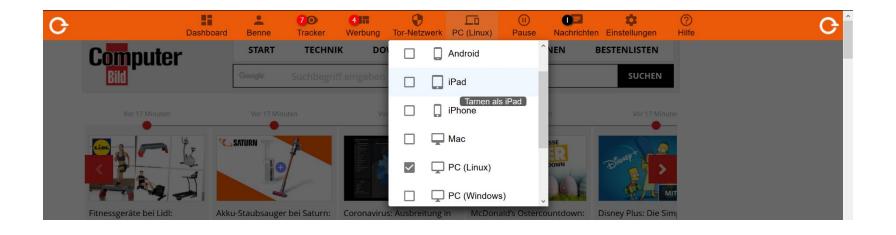


- eBlocker nutzt DNS-Blocking als Fallback, falls SSL-Bumping nicht möglich ✓
 - Z.B. bei SmartTVs, Spielekonsolen oder anderen IoT-Geräten

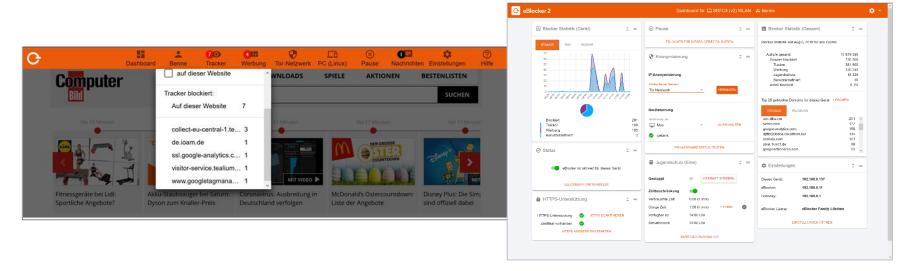
Exkurs: DNS-Spuren beim Provider


- Problem: Provider DNS erhält aufgerufene Domains, kann Nutzer profilieren
- Lösung: Anderen DNS-Server verwenden?
 - O Nachteil: Anderer DNS-Server kann Nutzer genauso profilieren
 - Besser: DNS-Requests auf verschiedene DNS-Server verteilen (z.B Round-Robin auf DNS-Liste)
- Alternative: Nur DNS-Requests über Tor routen (nicht gesamten Traffic)
 - Vorteil: Gute Geschwindigkeit, da DNS nur wenige Bytes ausmacht (dann Caching)
- eBlocker beherrscht DNS-Round-Robin und DNS über Tor ✓

IP-Adresse anonymisieren


- Ziel: Eigene IP-Adresse soll verborgen / anonymisiert werden
- C Lösung: Traffic muss über externen Service geroutet werden
 - VPN: OpenVPN Endpoint im eBlocker (kann unterschiedliche Provider parallel bedienen)
 - Tor: Tor Endpoint im eBlocker (Exit-node kann konfiguriert werden)
- Individuelles Traffic-Routing von jedem Endgerät zum jeweiligen Endpoint
 - Über IPTables im eBlocker wird der Traffic jedes Gerätes einem Endpoint zugeordnet ✓

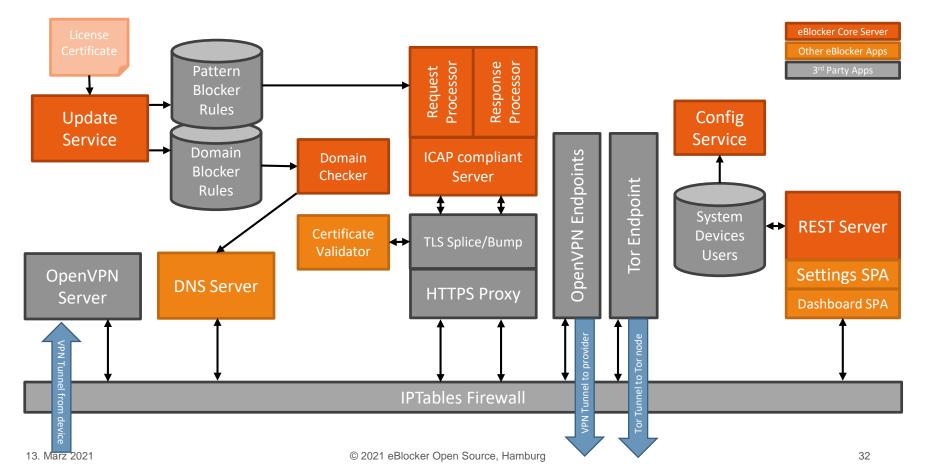
Fingerprinting erschweren


- Ziel: Geräteinformation auf Protokollebene verschleiern
- C Lösung: User Agent verändern (nur mit SSL-Bumping bzw. unverschlüsselt)
- Wichtig: User Agent muss statistisch aus der "breiten Masse" kommen.

User Interface

- C Ziel: Geräte-individuelle Steuerung des eBlockers durch den Nutzer
- Lösung: Einfügen einer "Controlbar" in jeder HTML-Seite
 - JavaScript/HTML wird automatisch in HTML-Seite eingefügt und kommuniziert mit eBlocker
- Alternative: Steuerungs-Dashboard über einfache "eBlocker.box"

Schutz für unterwegs



- C Ziel: Wenn der Nutzer nicht im Heimnetz ist, soll er geschützt werden
- Lösung: Gesamter mobiler Traffic wird zum eBlocker ins Heimnetz geschickt
- OpenVPN Server läuft auf eBlocker
- "eBlocker Cloud" für dynamischen DNS-Dienst
- Herausforderungen für DAUs:
 - Mobiles Gerät muss OpenVPN-Client Installation zulassen
 - Port Forwarding 1194 UDP vom Router zum eBlocker

eBlocker Core Architecture

Fazit

Personenbezogene Massenüberwachung und Profilbildung im Internet ist heute "normal"

Schutz vor Profilbildung und Anonymität ist technisch komplex

Open Source Software + Raspberry Pi

Switch on Privacy.

Vielen Dank!

eBlocker.org

Raspberry Pi Images

github.com/eblocker Open Source Code voluntary@eBlocker.org
Kontakt für Unterstützer